全本小说网 www.quanben.ac,全能科技巨头无错无删减全文免费阅读!
似,其发送端谐振回路的电磁波全方位开放式弥漫整个空间,接收端回路谐振在特定的频率上,从而实现能量的传递。但其存在电磁辐射,传输功率越大,距离越远,效率越低,辐射也越严重。
而叶华果断的摒弃了当前研究前沿的这两种技术手段,甚至都没有在此基础上改进,因为作用不大。
他选择的是一种全新的无线输电技术太赫兹耦合共振原理。
核心技术点就是太赫兹!
据说尼古拉特斯拉的记忆超群,可以记下整本书并且能够随意背诵,能够在大脑中设想出整个设备的样子,然后在不写下任何东西的情况下,构造出这个设备。
如今的叶华同样具备这样的能力,而且他比特斯拉拥有更强大的全息辅助系统,这无疑能够极大的提高技术开发效率,缩短一项开发时长周期。
想要开发出基于太赫兹耦合共振技术的无线输电设备,需要搞定的技术点也很多,不夸张的说,搞定这套无线输电设备,能让叶华从中获得好几个诺贝尔奖。
实际上在锡烯材料的应用技术突破,这里就蕴含着诺贝尔奖级别的技术突破,而且科学界对叶华得奖的呼声越来越高,但诺贝尔奖评选机构依旧比较审慎,很多科学技术的突破,可能要经过十几年甚至更久才被认定评奖,诺贝尔奖在自然科学这一领域还是很有权威性的。
至于经济学奖、和平奖之类的看看就好。
再一个让诺贝尔奖机构有点无奈的是,从各方面连看,叶华对诺贝尔奖的兴趣缺缺。
……
太赫兹耦合共振技术,在这当中有太多的技术空白了。
首先一个就是太赫兹(thz),在电磁波谱中有一段尚未被人类有效认识和利用的真空地带,其频率范围为100ghz~10thz,位于微波和红外辐射之间,即所谓的“太赫兹空隙”。
太赫兹在早期不同的领域有不同的名称,在光学领域被成为红外,在电子学领域,又称为亚毫米波、超微波等。
叶华想要搞太赫兹耦合共振技术,首先得搞定太赫兹这个技术点。
目前还没有哪个机构或材料公司能够制作高功率便携式连续可调的并且成本较低的thz发射源,以及满足现实要求的滤光片,另外也没有能够在常温下直接探测太赫兹射线的被动式探测器。
叶华要用太赫兹,这些他必须得搞出来。
而无线输电必须用太赫兹电磁波,其它波频辐射对人体是或多或少有害的,但太赫兹释放的能量很小,不会在人体内产生有害的光致电离,所以,相比较x射线,太赫兹射线才能真正意义上进入人们的生活当中。
不然谁敢用?对人体有巨大辐射伤害的产品连上市的可能性都没有。
电磁波的强度随着距离的衰减是呈指数衰减的,频率越高,伤害越大,频率低,电磁波的能量小,穿透人体的时候吸收的能量如果不足以使得分子或原子的电子电离,几乎不会有伤害。
但像x射线,就有电离作用,长期照射就会损害细胞电性,使细胞找到破坏、病变、致癌。
因为水对电磁波的吸收很大,而人体有70%的水分,但空气中的电磁辐射量很小,有些波段的电磁波,如非常热的太赫兹电磁波,与人体内的有机物和大分子的只有震动相近,辐射量小,几乎无害。
毫无疑问是无线输电的绝佳选择。
叶华把所需要的器材清单都发给了采购部,在等待的一周时期里,他也没闲着,利用全息辅助系统制作设计图纸。
他虽然能够在大脑中设想出整个设备的样子,并且在不写下任何数据的情况下,精准的构造出这个设备。
但一个人的效率未免太低了,他还想更快,那就需要团队协助。
叶华如果一个人干就如同经典计算机只能一个一个来,而把设计图纸捣腾出来,然后组建团队把图纸分发下去,就如同量子计算机一样,并行处理,效率大增。
……
-- 上拉加载下一章 s -->
似,其发送端谐振回路的电磁波全方位开放式弥漫整个空间,接收端回路谐振在特定的频率上,从而实现能量的传递。但其存在电磁辐射,传输功率越大,距离越远,效率越低,辐射也越严重。
而叶华果断的摒弃了当前研究前沿的这两种技术手段,甚至都没有在此基础上改进,因为作用不大。
他选择的是一种全新的无线输电技术太赫兹耦合共振原理。
核心技术点就是太赫兹!
据说尼古拉特斯拉的记忆超群,可以记下整本书并且能够随意背诵,能够在大脑中设想出整个设备的样子,然后在不写下任何东西的情况下,构造出这个设备。
如今的叶华同样具备这样的能力,而且他比特斯拉拥有更强大的全息辅助系统,这无疑能够极大的提高技术开发效率,缩短一项开发时长周期。
想要开发出基于太赫兹耦合共振技术的无线输电设备,需要搞定的技术点也很多,不夸张的说,搞定这套无线输电设备,能让叶华从中获得好几个诺贝尔奖。
实际上在锡烯材料的应用技术突破,这里就蕴含着诺贝尔奖级别的技术突破,而且科学界对叶华得奖的呼声越来越高,但诺贝尔奖评选机构依旧比较审慎,很多科学技术的突破,可能要经过十几年甚至更久才被认定评奖,诺贝尔奖在自然科学这一领域还是很有权威性的。
至于经济学奖、和平奖之类的看看就好。
再一个让诺贝尔奖机构有点无奈的是,从各方面连看,叶华对诺贝尔奖的兴趣缺缺。
……
太赫兹耦合共振技术,在这当中有太多的技术空白了。
首先一个就是太赫兹(thz),在电磁波谱中有一段尚未被人类有效认识和利用的真空地带,其频率范围为100ghz~10thz,位于微波和红外辐射之间,即所谓的“太赫兹空隙”。
太赫兹在早期不同的领域有不同的名称,在光学领域被成为红外,在电子学领域,又称为亚毫米波、超微波等。
叶华想要搞太赫兹耦合共振技术,首先得搞定太赫兹这个技术点。
目前还没有哪个机构或材料公司能够制作高功率便携式连续可调的并且成本较低的thz发射源,以及满足现实要求的滤光片,另外也没有能够在常温下直接探测太赫兹射线的被动式探测器。
叶华要用太赫兹,这些他必须得搞出来。
而无线输电必须用太赫兹电磁波,其它波频辐射对人体是或多或少有害的,但太赫兹释放的能量很小,不会在人体内产生有害的光致电离,所以,相比较x射线,太赫兹射线才能真正意义上进入人们的生活当中。
不然谁敢用?对人体有巨大辐射伤害的产品连上市的可能性都没有。
电磁波的强度随着距离的衰减是呈指数衰减的,频率越高,伤害越大,频率低,电磁波的能量小,穿透人体的时候吸收的能量如果不足以使得分子或原子的电子电离,几乎不会有伤害。
但像x射线,就有电离作用,长期照射就会损害细胞电性,使细胞找到破坏、病变、致癌。
因为水对电磁波的吸收很大,而人体有70%的水分,但空气中的电磁辐射量很小,有些波段的电磁波,如非常热的太赫兹电磁波,与人体内的有机物和大分子的只有震动相近,辐射量小,几乎无害。
毫无疑问是无线输电的绝佳选择。
叶华把所需要的器材清单都发给了采购部,在等待的一周时期里,他也没闲着,利用全息辅助系统制作设计图纸。
他虽然能够在大脑中设想出整个设备的样子,并且在不写下任何数据的情况下,精准的构造出这个设备。
但一个人的效率未免太低了,他还想更快,那就需要团队协助。
叶华如果一个人干就如同经典计算机只能一个一个来,而把设计图纸捣腾出来,然后组建团队把图纸分发下去,就如同量子计算机一样,并行处理,效率大增。
……
-- 上拉加载下一章 s -->